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Figure 1: Photo-realistic hand gesture generation via various methods. Our method, named MUFEN, improves the realism and
accuracy of gesture generation by fusing multi-view and multi-modal features of the gesture.

Abstract
High-fidelity hand gesture generation represents a significant chal-
lenge in human-centric generation tasks. Existing methods typi-
cally employ a single-view mesh-rendered image prior to enhanc-
ing gesture generation quality. However, the spatial complexity
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’25, Dublin, Ireland
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2035-2/2025/10
https://doi.org/10.1145/3746027.3755828

of hand gestures and the inherent limitations of single-view ren-
dering make it difficult to capture complete gesture information,
particularly when fingers are occluded. The fundamental contra-
diction lies in the loss of 3D topological relationships through 2D
projection and the incomplete spatial coverage inherent to single-
view representations. Diverging from single-view prior approaches,
we propose a multi-view prior framework, named Multi-Modal
UNet-based Feature Encoder (MUFEN), to guide diffusion mod-
els in learning comprehensive 3D hand information. Specifically,
we extend conventional front-view rendering to include rear, left,
right, top, and bottom perspectives, selecting the most information-
rich view combination as training priors to address occlusion. This
multi-view prior with a dedicated dual stream encoder significantly
improves the model’s understanding of complete hand features.
Furthermore, we design a bounding box feature fusion module,
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which can fuse the gesture localization features and multi-modal
features to enhance the location-awareness of the MUFEN features
to the gesture-related features. Experiments demonstrate that our
method achieves state-of-the-art performance in both quantitative
metrics and qualitative evaluations. The source code is available at
https://github.com/fuqifan/MUFEN.

CCS Concepts
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1 Introduction
Human-centric image and video generation has been a long-standing
focus in the field of computer vision [14, 28]. Despite remarkable
advancements in diffusion models that have enabled more realistic
human generation [24] and improved pose control accuracy [10, 27],
achieving natural and precise hand gesture generation remains a
critical challenge, with persistent issues of unnatural occurrences
such as finger multiplicity or deficiency, as shown in Figure 1. This
challenge primarily arises from two inherent characteristics: Firstly,
the hand is highly flexible, capable of diverse gestures - although
occupying minimal spatial proportion relative to the full body, the
hands possess extraordinary degrees of freedom and movement
complexity. Secondly, severe occlusion phenomena, particularly
inter-finger occlusions, create substantial obstacles for models to
learn comprehensive hand representations, potentially leading to
incomplete hand modelling through partial observation.

The challenge of diverse hand gestures can be addressed through
the enhancement of dataset content, model structure, and train-
ing algorithm. Upper-body-focused datasets are carefully designed
to emphasize hand gesture representations [3, 8, 11]. Notably, Ha-
GRID [8] – originally designed for gesture recognition – has emerged
as the most popular dataset for hand generation tasks. Beyond
specialized gesture dataset construction, numerous methods have
developed dedicated architectures or algorithms to enhance ges-
ture generation quality. These approaches are broadly categorized
into single-stage generation, and multi-stage inpainting method-
ologies. For single-stage generation, researchers primarily design
dedicated encoders to extract rich features from 3Dmeshes or depth
image priors, thereby guiding generation models to synthesize high-
fidelity hand gestures [16]. Multi-stage approaches typically employ
specialized generative models to refine hand regions after initial
full-image generation by general-purpose models, implementing
targeted corrections through cascaded networks [13].

Although existing methods have made progress in improving
the quality of gesture generation, they typically rely on mesh ren-
derings from a single viewpoint as prior [13, 24]. This limitation

prevents the model from acquiring sufficient 3D information of the
hand gestures, especially in cases of self-occlusion, where critical
structural information is often missing. As illustrated in Figure 2
with the thumb obscured, complex gestures often involve severe
occlusions, particularly in the fingers, where occluded parts result
in ambiguities, making it difficult for the model to infer accurate fin-
ger configurations. Such inaccurate modelling severely hinders the
learning of complete hand representations, leading to significant
distortions during gesture generation, such as missing or multiple
fingers.

To address occlusion issues in gestures and enable the model to
learn comprehensive hand modelling information, we rendered the
meshes from front, rear, left, right, top, and bottom perspectives
to supplement the occlusion information in a single view. We then
designed a Multi-Modal UNet-based Feature Encoder (MUFEN) to
extract multi-view multi-modal features of hand gesture. Specifi-
cally, MUFEN uses dual stream rendering encoder for the rendering
meshes from different perspectives to extract multi-view features.
Deep features and linguistic labeling features are extracted using a
trainable deep encoder and a frozen CLIP, respectively. Additionally,
to enhance the spatial information of multimodal hand features
extracted by MUFEN, a bounding box feature fusion module is
proposed for enhancing multimodal gesture features with gesture
localization features. This allows the MUFEN features to be fused
directly with the features of the diffusion model, without the need
for separate adjustments to the fusion region like zero padding
strategies [4] that have appeared in the literature.

In summary, the contributions of this paper are as follows:

• We utilize multi-view (including front, rear, left, right, top,
and bottom perspectives) gesture rendering mesh priors to
supplement occluded hand information in single-view sce-
narios.

• We design a multi-modal UNet-based feature encoder named
MUFEN with dual stream rendering encoder to extract and
fuse the multi-view multi-modal features of the gesture re-
gion, to enhance the model’s ability to learn comprehensive
hand modelling information.

• We leverage gesture localization features from a bounding
box to enhance MUFEN features by a trainable bounding
box feature fusion module, enabling MUFEN features to be
fused directly with the diffusion model features without the
need for fusion region adjustment.

• Simulations demonstrate that the proposed MUFEN achieves
state-of-the-art (SOTA) performance in both quantitative and
qualitative analyses.

2 Related Work
2.1 Controllable Human-Centric Generation
Controllable human-centric image or video generation is a popular
task. Recently, ControlNet [27] and T2I-Adapter [15] enable con-
ditional human pose generation by incorporating control signals
such as skeletons, sketches, and depth maps. And then, Control-
Net++ [10] improved control precision under multiple conditions
by introducing a pixel-level cycle consistency loss, enhancing re-
alism. Follow Your Pose [14] fine-tuned a diffusion model with
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human-centric data in the first stage and trained temporal atten-
tion layers in the second stage to achieve temporal consistency,
enabling pose-controllable human video generation. Building on
this, Follow Your Pose v2 [26] incorporated multiple control signals,
such as depth maps and optical flow, to improve the accuracy of
pose control and temporal consistency.

2.2 Photo-Realistic Hand Gesture Generation
Recent approaches aiming at improving the fidelity of gesture gen-
eration can generally be grouped into two categories: single-stage
methods [5, 16, 18] and multi-step pipelines [13, 20, 24, 28].
Single-stage Methods: These methods produce the entire image
in one forward pass while simultaneously directing the model’s
focus toward learning the detailed features of the hand area. For in-
stance, HandDiffuser [16] strengthens the diffusion model’s ability
to capture the structural patterns of hand gestures by integrating
3D hand mesh data through a dedicated encoding module. Also
leveraging the rich information from 3D mesh, a novel text-guided
framework named AttentionHand [18] uses 3D hand mesh prior
with text and bounding box for controllable hand image genera-
tion. Overall, achieving realistic hand generation within a one-step
framework is still a complex task due to data-intensive and the
need to simultaneously maintain both holistic image coherence and
intricate hand geometry.
Multi-stage Methods: These approaches divide the gesture gener-
ation task into several stages, where each stage applies a specific
generative model to handle particular regions of the image. The out-
puts from all stages are then combined into a final result. A key step
in this pipeline is localized inpainting: based on the coarse image
from the initial stage, a hand-focused inpainting model is used to
enhance the quality of the hand area. Compared with single-stage
frameworks, multi-stage strategies can improve the realism and
accuracy of hand synthesis, although they usually require more
complex inference procedures and additional model components.
HandRefiner [13] adapts ControlNet [27] by fine-tuning it with
hand depth maps, allowing the inpainting diffusion model to re-
pair the distorted hand area. However, it still struggles to maintain
consistency between the refined hand area and the surrounding
content generated in the first step. Leveraging hand and face masks
from DINO v2 [17] for segmentation, RealisHuman [24] introduces
a diffusion model controlled by multiple prior conditions to gen-
erate realistic facial and hand areas, followed by a second step to
repaint the transitions between background and modified human
parts. Nevertheless, the prior used comes from a 2D projection of a
single viewpoint and still does not build complete structural infor-
mation. Although previous single-stage and multi-stage approaches
leverage multi-modal priors to enhance the quality of hand gesture
generation, none of them incorporate complementary information
from multiple viewpoints. This is particularly important for hand
gestures, which often involve complex spatial structures and severe
occlusions. In contrast to these methods, our proposed MUFEN
extracts and fuses multi-view features along with a multi-modal
feature of hand gestures. By providing a more comprehensive repre-
sentation of hand gestures, our method guides the diffusion model

to generate more realistic hand gestures within a single-stage in-
ference framework, removing the need for additional stages or
external inpainting processes.

3 Multi-Modal UNet-based Feature Encoder
3.1 Preliminaries
3.1.1 Latent Diffusion Model with ControlNet Guidance. In this
paper, we utilize a latent diffusion framework as our core gen-
erative backbone due to its strong generation performance and
improved efficiency. Latent Diffusion Models (LDMs) [22] operate
in a compressed latent space rather than directly in pixel space,
significantly reducing computational requirements when handling
high-dimensional data. During the forward diffusion stage, Gauss-
ian noise is incrementally injected into the latent variable z0, pro-
ducing a noisy version z𝑡 according to the formula:

z𝑡 =
√
𝛼𝑡 z0 +

√
1 − 𝛼𝑡𝝐, 𝝐 ∼ N(0, I), (1)

where 𝛼𝑡 defines the variance schedule. To reconstruct the denoised
representations, the reverse process employs a neural model 𝜖𝜃 to
estimate the original noise component and thus denoise z𝑡 . The
model is optimized using a noise prediction loss based on mean
squared error:

LLDM = Ex,𝝐,𝑡
[
∥𝝐 − 𝜖𝜃 (z𝑡 , 𝑡)∥2

2
]
, (2)

where z𝑡 is encoded from the input data x by an autoencoder. This
formulation allows for efficient sampling and ensures that the de-
coded outputs from the latent space maintain high fidelity to the
original data.

To further enhance the controllability of the generation process,
especially for structure-aware image synthesis, ControlNet [27] is
incorporated as an auxiliary module. ControlNet extends diffusion
models by introducing an additional conditioning pathway that
guides the generation according to specific structural cues, such as
key points, depth, or semantic maps. This mechanism allows the
model to follow external constraints while preserving the quality
of the generated content. It does so by integrating control embed-
dings 𝑐 into the denoising network at every step of the diffusion.
The objective function of ControlNet adapts the LDM loss into a
conditional form:

Ldenoise = Ex,𝝐,𝑡,𝑐
[
∥𝝐 − 𝜖𝜃 (z𝑡 , 𝑡, 𝑐)∥2

2
]
, (3)

where the control signal 𝑐 provides task-specific guidance to the
model.

3.1.2 MANO Hand Representation. To model the 3D structure of
hand gestures, we adopt the hand Model with Articulated and Non-
rigid deformations (MANO) model [23], which is a parametric hand
model similar in design to the SMPL body model [12]. The MANO
framework produces a three-dimensional hand mesh composed
of 778 vertices, each described by a triplet of spatial coordinates
(𝑥,𝑦, 𝑧). Moreover, it provides a set of 21 semantic key points repre-
senting essential anatomical joints of the hand, including the wrist
and four articulations per finger. For multi-view mesh rendering,
we utilized the recent mesh annotator HaMeR [19] for accurate
recovery of MANO mesh parameters. This procedure allowed us to
extract both the MANO pose and shape parameters for each hand
gesture, along with the corresponding hand bounding boxes.
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Figure 2: Multi-view hand MANO mesh rendering pipeline.

3.2 Multi-View MANO Mesh Rendering
Figure 2 illustrates our pipeline for rendering Multi-View MANO
Meshes for each gesture. Specifically, for each input image, we
first employ HaMeR [19] to extract the meshes of all hand gestures
present in the image and render front-view mesh images of these
gestures. Subsequently, we adjust the mesh vertex coordinates and
camera positions through coordinate transformations to achieve
rendering from other viewpoints. We begin by detailing the coor-
dinate transformation from the front view to the rear view, which
involves a 180-degree rotation around the Y-axis, effectively revers-
ing the direction of observation. Specifically, the transformation
from front view to rear view can be formalized as:

vrear = R𝑦 (𝜋) · vfront,

where vfront represents the vertex coordinates in the front view,
vrear represents the transformed coordinates for the rear view, and
R𝑦 (𝜋) is the rotation matrix for a 180-degree rotation around the
Y-axis:

R𝑦 (𝜋) = ©­«
−1 0 0
0 1 0
0 0 −1

ª®¬ ,
This transformation effectively negates the X-coordinate: 𝑥rear =
−𝑥front, preserves the Y-coordinate: 𝑦rear = 𝑦front, and negates the
Z-coordinate: 𝑧rear = −𝑧front

tcamera_front = (𝑡𝑥 , 𝑡𝑦, 𝑡𝑧)𝑇 is the original camera translation
vector in the front view. To maintain proper viewing geometry
after the vertex transformation, the camera position must also be
adjusted. Specifically, the X-component of the camera translation
vector must be mirrored:

tcamera_rear =
©­«
−𝑡𝑥
𝑡𝑦
𝑡𝑧

ª®¬ .
This transformation preserves the relative spatial arrangement of

the vertices while providing a view from the opposite side, which is
essential for the comprehensive analysis of 3D hand models where
both front and rear views may reveal different structural features.

To transform coordinates from the front view to the left or right
side view, a rotation around the Y-axis is applied. This transforma-
tion can be represented as:

vside = R𝑦 (𝜃 ) · vfront,
where vfront and vside represent vertex coordinates in the front
and side viewpoints respectively, and R𝑦 (𝜃 ) is the rotation matrix
around the Y-axis:

R𝑦 (𝜃 ) = ©­«
cos(𝜃 ) 0 sin(𝜃 )

0 1 0
− sin(𝜃 ) 0 cos(𝜃 )

ª®¬ ,
where 𝜃 = 𝜋

2 for the right side view and 𝜃 = −𝜋
2 for the left side

view.
After this rotation, the original X-coordinate translational offset

(𝑡𝑥 ) becomes a Z-axis offset: 𝑡𝑧 = −𝑡𝑥 for right side view and 𝑡𝑧 = 𝑡𝑥
for left side view.

To transform coordinates from the front view to the top or bot-
tom view, a rotation around the X-axis is applied:

vvertical = R𝑥 (𝜙) · vfront,
where vfront and vvertical represent vertex coordinates in the front
and vertical viewpoints respectively, and R𝑥 (𝜙) is the rotation
matrix around the X-axis:

R𝑥 (𝜙) = ©­«
1 0 0
0 cos(𝜙) − sin(𝜙)
0 sin(𝜙) cos(𝜙)

ª®¬ ,
where 𝜙 = 𝜋

2 for the top view and 𝜙 = −𝜋
2 for the bottom view.

After this rotation, the original Y-coordinate translational offset
(𝑡𝑦 ) becomes a Z-axis offset: 𝑡𝑧 = 𝑡𝑦 for top view and 𝑡𝑧 = −𝑡𝑦 for
bottom view.

We also adjusted the parameters to make the lighting and colors
consistent across the viewpoint meshes. To ensure perceptual uni-
formity across all viewpoints, the rendering pipeline adopts a uni-
fied color parameterization and a standardized multi-light illumina-
tion model. The base mesh color is fixed as Cmesh = (1.0, 1.0, 0.9) ∈
R3 with a constant background color Cbg = (0, 0, 0), and per-vertex
colors are uniformly assigned as (Cmesh, 1.0). Left–right hand differ-
entiation is applied via fixed chromatic offsets, ensuring consistent
hue mapping across all rendered instances. Material parameters,
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Dual Stream Rendering Encoder

ResNet50 CBAM CNN

MLP

ResNet50 CBAM CNN

Trainable 

Figure 3: The dual-stream rendering encoder receives a pair
of mesh images, extracts the features from them separately,
and then fuses the extracted features for output.

including metallic factor𝑚 = 0.0 and roughness 𝑟 = 1.0, remain
fixed to eliminate view-dependent reflectance variations.

Illumination consistency is maintained through a fixed compos-
ite lighting model

Ltotal = Lambient + Ldir + Lpoint + Lraymond,

where ambient light (0.3, 0.3, 0.3) provides a global base tone, and
directional, point, and Raymond lights1 are placed at pre-defined
positions with constant intensities. View-specific compensation
lights are added for oblique or side views while preserving the
global intensity balance, ensuring that shading gradients, color
perception, and brightness remain consistent across all rendered
perspectives.

These transformations collectively enable comprehensive multi-
view visualization of 3Dmeshmodels while preserving their relative
spatial configurations.

3.3 Dual Stream Rendering Encoder for the
most Informative Perspective

The information contained in the six basic viewmeshes rendered by
the above method is complementary and grouped into three com-
plementary pairs: (front, back), (left, right), and (top, bottom). The
views in a complementary pair complement each other’s occluded
information. For different gestures, the amount of information con-
tained in these three sets of views is also different.

Based on the characteristics of human gestures, we calculate the
projected area of the six views on their view planes and select the
one with the largest projected area as the most informative view
for the gesture. This ensures coverage of critical gesture cues while
reducing redundancy. Taking the gesture in Figure 2 as an example,
the most informative pair of views was calculated to be the front
and rear views.

Then, we design a dual-stream rendering encoder to extract and
fuse this complementary information for the two rendered meshes
in the most informative view. As shown in Figure 3, the dual-stream
encoder integrates two rendering encoders, each processing one of
the two input mesh images. The features from both encoders are
concatenated and passed through the fusion network to produce a
unified feature representation.

1https://github.com/mmatl/pyrender/blob/master/pyrender/viewer.py

Diffusion UNet

Text prompt: A woman with a green 
plaid shirt is making a mute gesture with 
her hand in front of her mouth.

ControlNet

Denoise Loss
512 × 512512 × 512

512 × 512
Trainable 
Frozen  

Reconstruction 
loss

225 × 225
Multi-Modal 
Encoder

Gesture label

Perspective labels

Hand bounding box

Multimodal Unet

MUFEN

Figure 4: Training pipeline of Multi-Modal UNet-based Fea-
ture Encoder (MUFEN).

Gesture labels

225 × 225

Hand depth map

Perspective 
labels

Multi-modal Encoder

BBox
Fusion 
module

Dual 
Stream 
Rendering 
Encoder

CLIP

Depth 
Encoder

BBox
Fusion 
module

BBox
Fusion 
module

BBox
Fusion 
module

CLIP

Hand 
bounding 

box

MLP

Trainable 
Frozen  

Figure 5: Our multi-modal encoder integrates features from
mesh images, text, depth images, and bounding boxes with a
dedicated encoder for each modality.

Specifically, in each rendering encoder, a pre-trained ResNet50
[6] model, truncated before the final layers, is first used to extract
features. Then, a Convolutional Block Attention Module [25] with
both channel and spatial attention mechanisms is applied to en-
hance these features. Finally the feature channel is reduced to 1280
for output by a convolutional layer.

Two rendering encoders are followed by a fusion network, which
consists of a series of fully connected layers with ReLU activations
[1]. It also employs a residual connection to preserve the original
input features while learning new representations.

3.4 Multi-Modal UNet-based Feature Encoder
Figure 4 demonstrates the training pipeline of Multi-Modal UNet-
based Feature Encoder (MUFEN), which consists of two parts: a
Multi-Modal Encoder and a Multi-Modal UNet. This architecture is
responsible for the encoding of different modalities, their fusion,
and the subsequent processing through a UNet to produce a final
output.

https://github.com/mmatl/pyrender/blob/master/pyrender/viewer.py
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Module

Feature 
Transform

Attention 
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Gated
Fusion

Linear 
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×

＋

Modal 
feature

Bounding box feature

Gate 
score

Gated 
fusion 
feature

Gated residual fusion feature

Figure 6: The bounding box (BBox) fusion module adds lo-
calization information from the gesture bounding box to the
multimodal features extracted by MUFEN through attention
and gating mechanisms.

As shown in Figure 5, the Multi-Modal Encoder encodes and
integrates features from different modalities, including mesh im-
ages, text, depth images, and bounding boxes. Each modality has a
dedicated encoder, and bounding box features are fused into each
modality via a tailored fusion mechanism. Specifically, the mesh
modality is processed by a Dual Stream Rendering Encoder, which
extracts features from two cropped mesh images using bounding
boxes, as described in the previous section. The depth encoder
shares the same structure as a single rendering encoder and ex-
tracts both gesture and environmental features from the depth map.
Gesture-related text features are extracted from the text label by
pre-trained openai-clip-vit-large-patch14 [21]. The Bounding Box
Encoder built with multi-layer perceptrons (MLP) [9] and extracts
gesture localization features from the bounding box coordinate data
consisting of the 2D coordinates of the top-left and bottom-right
corners. These localization features are later used to enhance the
spatial localization ability of other modalities through BBox Fusion
modules.

For each modality, there is a dedicated BBox Fusion module,
as shown in Figure 6. This module integrates the feature of the
bounding box into the feature specific to other modalities using a
combination of attention mechanisms and gating strategies. The
fusion process involves: Feature Transformation, where the bound-
ing box features are transformed to match the feature dimension of
the modality; Attention Fusion, where the bounding box features
act as queries, while the modality features serve as keys and values
in an attention mechanism, allowing the bounding box features
to capture context from the modality features; Learnable Gated
Fusion, where a gating mechanism controls the extent to which the
bounding box information is integrated into the modality features.
By using a learnable gate, the model can adaptively determine the
importance of the context features for each token and each sample
in the batch, leading to more nuanced and context-aware feature
representations; Residual Connection and Projection, where the

final fused features are obtained by adding the original modality
features to the gated context features, followed by a linear projec-
tion.

The output of the Multi-Modal Encoder is fed into a Multi-Modal
UNet. Specifically, modality features fused with bounding box in-
formation are first concatenated along the feature dimension and
passed through an MLP to obtain a unified fused feature, which
then passes through an identity layer, preserving its shape. The
spatial dimensions are reduced from 16×16 to 8×8 in the Down-
Block, which includes a convolutional layer with self-attention,
allowing the model to capture long-range dependencies. At the bot-
tleneck, the features are processed with a self-attention mechanism
to further enhance feature interactions without changing the spatial
dimensions. During the up-sampling process, the spatial resolution
is restored from 8×8 to 16×16 using bilinear interpolation, followed
by a convolutional layer. Cross-attention is applied to integrate skip
connections from the encoder. Finally, the features are up-scaled to
the target resolution of 225×225 and generates the final RGB image
output using a convolutional layer.

3.5 Training
As shown in Figure 4, MUFEN is trained with the following loss
function:

L = Ldenoise + 𝜆LreHand, (4)

where LreHand =E
��IreHand − ÎreHand

��, IreHand and ÎreHand are the
ground truth gesture region image and the reconstructed gesture
region image, respectively, and 𝜆 is a weight to balance Ldenoise
and LreHand.

4 Experiments
4.1 Implementation Details
We used the processed HaGRID v1 dataset provided by [4], which
contained 28,814 training images and 7,623 testing images across
18 gesture categories, with the entire image size 512 × 512. Based
on the existing multi-modal annotations, we additionally rendered
rear, left, right, top, and bottom views mesh using off-the-shelf tool
HaMeR [19] and recorded the corresponding labels and projection
areas for each view. For each gesture, we selected the two views
with the largest projection areas as the complementary view pair.
During training, we fixed the parameters of the Diffusion v1.5 model
and trained the proposed MUFEN together with ControlNet [27]
for 90,000 steps using a learning rate of 1𝑒−6 and a batch size of 6.
The loss weight 𝜆 was set to 0.1. For comparison, we used Control-
Net [27], HandRefiner [13], RealisHuman [24], and HanDrawer [4]
as baselines. All training and inference were conducted on a single
NVIDIA Tesla A100 80GB GPU.

4.2 Evaluation Metrics
Frechet Inception Distance (FID) [7] and Kernel Inception Distance
(KID) [2] are used for entire image evaluation, and hand region
metrics FID-Hand and KID-Hand are used to measure the gener-
ation quality of hand regions. Hand regions are cropped from an
entire image with 299× 299 size centred on the hand bounding box,
because Inception v3 model for calculating FID requires a 299× 299
size image as input. In all cases, lower numerical values represent
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Figure 7: Qualitative results for different methods.

better performance. FID-H and KID-H are our primary quantitative
evaluation metrics as they focus on the hand regions.

4.3 Quantitative Results
The quantitative results comparing several methods are presented
in Table 1. Notably, the results indicate that the proposed MUFEN
method achieves the best performance across all metrics. For the
hand-related metrics, MUFEN achieves an FID-Hand of 26.85 and a
KID-Hand of 0.0173±0.0007, showing a substantial improvement
compared to the other methods. This comparison indicates that the
proposed MUFEN method brings great improvements, specifically
in the generation of hand regions. This superior performance is
primarily attributed to the use of a dual-stream encoder that extracts
and fuses complementary information from different viewpoints of
the hand. Moreover, the carefully designed multi-modal encoder
further enhances the generation capability of the hand modality.
These architectural innovations collectively contribute to a more
effective representation and synthesis of hand features, as clearly
reflected by the improved FID-Hand and KID-Hand metrics.

Table 2 illustrates the paired t-test results of MUFEN compared
with other methods over 18 gestures. The paired t-tests across 18
gestures show MUFEN significantly outperforms ControlNet and
HandRefiner (𝑝 < 10−6, i.e. better on 18 out of 18 gestures). It also

improves over HanDrawer on KID-Hand (𝑝 = 0.018) and is near-
significant on FID-Hand (𝑝 = 0.059). Compared to RealisHuman,
MUFEN achieves significance on KID-Hand (𝑝 = 0.007), indicating
better detail fidelity. These results confirm MUFEN’s advantages
over baselines, especially under the KID metric.

To assess computational cost, we compare inference time across
single stage inferencemethods. On a NVIDIA Tesla A100 80GBGPU,
MUFEN takes 2.39 seconds to generate an image, slightly faster than
HanDrawer (2.45s), marginally slower than MUFEN-single-view
(2.12s), and ControlNet is fastest (1.65s). MUFEN offers stronger
generation quality with moderate cost. On a NVIDIA GeForce RTX
3080 Laptop GPU, rendering six-view meshes takes 1.45s, compared
to 0.48s for front-view-only rendering.

4.4 Qualitative Results
Figure 1 and Figure 7 illustrate the results of the qualitative analysis.
It is shown that the hand regions generated by our proposedMUFEN
are more realistic, and the gestures are more accurate.

4.5 Ablation Studies
Table 3 shows ablation results on different modalities and number
of views. Clearly, MUFEN with original settings consistently out-
performs all ablated variants on hand-region metrics, validating
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Table 1: Quantitative results on HaGRID v1 dataset. MUFEN outperforms existing methods in all metrics, with substantial
improvement repetition. The best performance is highlighted in bold.

Method FID-Hand ↓ KID-Hand ↓ FID ↓ KID ↓

SD v1.5 + ControlNet [27] 32.2157 0.0238±0.0007 31.4976 0.0238±0.0002
HandRefiner [13] 35.4393 0.0259±0.0004 35.7291 0.0296±0.0008
RealisHuman [24] 30.2902 0.0210±0.0004 31.0369 0.0232±0.0001
HanDrawer [4] 28.7506 0.0201±0.0008 26.8279 0.0196±0.0002
MUFEN (Ours) 26.8526 0.0173±0.0007 26.7749 0.0194±0.0003

Table 2: Paired t-test results of MUFEN compared with other methods over 18 gestures. For each comparison, the 𝑝-values
of both FID-Hand and KID-Hand metrics are reported, along with the number of gestures for which MUFEN achieves better
performance.

MUFEN compared With FID-Hand 𝑝-value Better Count KID-Hand 𝑝-value Better Count

SD v1.5 + ControlNet [27] 7.6 × 10−8 18 5.6 × 10−8 18
HandRefiner [13] 3.5 × 10−7 18 3.5 × 10−7 18
RealisHuman [24] 0.305 13 0.007 13
HanDrawer [4] 0.059 12 0.018 12

Table 3: Ablation results on different modalities and number of views. MUFEN exceeds all ablated variants on hand-region
metrics. The best quality is highlighted in bold.

Different settings FID-Hand ↓ KID-Hand ↓ FID ↓ KID ↓

4 views (front, back, left, right) 31.92 0.0222 ± 0.0007 30.52 0.0230 ± 0.0005
4 views (front, back, top, bottom) 32.03 0.0221 ± 0.0007 30.74 0.0235 ± 0.0004
4 views (left, right, top, bottom) 30.78 0.0205 ± 0.0008 28.79 0.0207 ± 0.0004
6 views 39.18 0.0297 ± 0.0009 37.78 0.0308 ± 0.0005
w/o depth map 38.11 0.0298 ± 0.0010 35.37 0.0288 ± 0.0003
w/o mesh 31.37 0.0217 ± 0.0008 31.35 0.0241 ± 0.0003
w/o gesture label 27.88 0.0180 ± 0.0006 27.94 0.0209 ± 0.0001
w/o bbox fusion 27.73 0.0175 ± 0.0007 26.46 0.0186 ± 0.0003
MUFEN (Ours) 26.85 0.0173±0.0007 26.77 0.0194±0.0003

our design choices. Regarding the choice of number of views, us-
ing more predefined views (4 or 6) degrades performance, due to
information redundancy from views overlap. While MUFEN selects
the co-axial view pair with the largest combined projected area (2
views) as input, which minimizes redundancy and enhances gesture
representation, achieving better performance and validating our
complementary view selection strategy. Regarding the combination
of multimodal, removing the depth map causes the most degrada-
tion (FID +8.60, FID-Hand +11.26), indicating its importance as a
structural prior. Excluding the mesh also significantly affects perfor-
mance (FID +4.58, FID-Hand +4.52), confirming its role in gesture
geometry modeling. Gesture labels yield moderate gains (FID +1.17),
while bounding box fusion helps localize hand regions, as reflected
in increased FID-Hand (+0.88) when removed. These results affirm
the importance of each modality and corresponding module in our
framework and support the effectiveness of MUFEN’s multimodal
design.

5 Conclusions
This paper proposed a diffusion model-based framework to enhance
the realism and accuracy of generated hand gestures in human-
centric generation tasks through multi-view priors. Specifically,
we employed coordinate transformations on 3D MANO mesh ren-
dering combined with viewpoint camera position adjustments to
derive six orthogonal mesh projections (front, rear, left, right, top,
bottom). We identified the optimal pair of viewpoints that contain
the maximum geometric information for prior integration via pro-
jected areas of the rendered meshes. We then designed a dedicated
Multi-Modal UNet-based Feature Encoder (MUFEN) to fuse the com-
prehensive hand modeling features from multi-view meshes and
multi-modal features contained in other modalities and enhanced
the accuracy of feature fusion with localization feature from the
bounding box. Experiments demonstrated that the proposed frame-
work significantly improved gesture generation quality, achieving
SOTA performance across both quantitative metrics and qualitative
assessments.
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